Latest Courses
ISTQB Artificial Intelligence Tester Sample ExamsCheck course
JAVA Programming Online Practice ExamCheck course
Programming for Kids and Beginners: Learn to Code in PythonCheck course
Practice Exams | Codeigniter 4 developer certificationCheck course
WordPress Practice Tests & Interview Questions (Basic/Adv)Check course
Git &Github Practice Tests & Interview Questions (Basic/Adv)Check course
Machine Learning and Deep Learning for Interviews & ResearchCheck course
Laravel | Build Pizza E-commerce WebsiteCheck course
101 - F5 CERTIFICATION EXAMCheck course
Master Python by Practicing 100 QuestionCheck course
ISTQB Artificial Intelligence Tester Sample ExamsCheck course
JAVA Programming Online Practice ExamCheck course
Programming for Kids and Beginners: Learn to Code in PythonCheck course
Practice Exams | Codeigniter 4 developer certificationCheck course
WordPress Practice Tests & Interview Questions (Basic/Adv)Check course
- 40% Data Cleansing Master Class in Python

Data Cleansing Master Class in Python

$11.99Track price

Add your review
Add to wishlistAdded to wishlistRemoved from wishlist 0
Add to compare

Welcome to Data Cleansing Master Class in Python.

Data preparation may be the most important part of a machine learning project. It is the most time consuming part, although it seems to be the least discussed topic. Data preparation, sometimes referred to as data preprocessing, is the act of transforming raw data into a form that is appropriate for modeling.

Machine learning algorithms require input data to be numbers, and most algorithm implementations maintain this expectation. Therefore, if your data contains data types and values that are not numbers, such as labels, you will need to change the data into numbers. Further, specific machine learning algorithms have expectations regarding the data types, scale, probability distribution, and relationships between input variables, and you may need to change the data to meet these expectations.

In the course you’ll learn: 

The importance of data preparation for predictive modeling machine learning projects.

How to prepare data in a way that avoids data leakage, and in turn, incorrect model evaluation.

How to identify and handle problems with messy data, such as outliers and missing values.

How to identify and remove irrelevant and redundant input variables with feature selection methods.

How to know which feature selection method to choose based on the data types of the variables.

Specification: Data Cleansing Master Class in Python

Duration

3.5 hours

Year

2021

Level

Intermediate

Certificate

Yes

Quizzes

No

User Reviews

0.0 out of 5
0
0
0
0
0
Write a review

There are no reviews yet.

Be the first to review “Data Cleansing Master Class in Python”

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Data Cleansing Master Class in Python
Data Cleansing Master Class in Python

$11.99

Price tracking

Java Code Geeks
Logo
Register New Account
Compare items
  • Total (0)
Compare