Latest Courses
ISTQB Artificial Intelligence Tester Sample ExamsCheck course
JAVA Programming Online Practice ExamCheck course
Programming for Kids and Beginners: Learn to Code in PythonCheck course
Practice Exams | Codeigniter 4 developer certificationCheck course
WordPress Practice Tests & Interview Questions (Basic/Adv)Check course
Git &Github Practice Tests & Interview Questions (Basic/Adv)Check course
Machine Learning and Deep Learning for Interviews & ResearchCheck course
Laravel | Build Pizza E-commerce WebsiteCheck course
101 - F5 CERTIFICATION EXAMCheck course
Master Python by Practicing 100 QuestionCheck course
ISTQB Artificial Intelligence Tester Sample ExamsCheck course
JAVA Programming Online Practice ExamCheck course
Programming for Kids and Beginners: Learn to Code in PythonCheck course
Practice Exams | Codeigniter 4 developer certificationCheck course
WordPress Practice Tests & Interview Questions (Basic/Adv)Check course
Data Science: Inference and Modeling

Data Science: Inference and Modeling

FREE

Add your review
Add to wishlistAdded to wishlistRemoved from wishlist 0
Add to compare
8.1/10 (Our Score)
Product is rated as #243 in category Data Science

Statistical inference and modeling are indispensable for analyzing data affected by chance, and thus essential for data scientists. In this course, you will learn these key concepts through a motivating case study on election forecasting. This course will show you how inference and modeling can be applied to develop the statistical approaches that make polls an effective tool and we’ll show you how to do this using R. You will learn concepts necessary to define estimates and margins of errors and learn how you can use these to make predictions relatively well and also provide an estimate of the precision of your forecast. Once you learn this you will be able to understand two concepts that are ubiquitous in data science: confidence intervals, and p–values. Then, to understand statements about the probability of a candidate winning, you will learn about Bayesian modeling. Finally, at the end of the course, we will put it all together to recreate a simplified version of an election forecast model and apply it to the 2016 election.

Instructor Details

Rafael Irizarry is a Professor of Biostatistics at the Harvard T.H. Chan School of Public Health and a Professor of Biostatistics and Computational Biology at the Dana Farber Cancer Institute. For the past 15 years, Dr. Irizarry’s research has focused on the analysis of genomics data. During this time, he has also has taught several classes, all related to applied statistics. Dr. Irizarry is one of the founders of the Bioconductor Project, an open source and open development software project for the analysis of genomic data. His publications related to these topics have been highly cited and his software implementations widely downloaded.

Specification: Data Science: Inference and Modeling

Duration

12 hours

Year

2020

Level

Beginner

Certificate

Yes

Quizzes

No

1 review for Data Science: Inference and Modeling

4.0 out of 5
0
1
0
0
0
Write a review
Show all Most Helpful Highest Rating Lowest Rating
  1. Luiz Cunha

    Easy but clear Course on Inference.

    The material is good quality, so you get quite a good efficiency between time spent and concepts/practical knowledge learnt on the subject.

    Helpful(0) Unhelpful(0)You have already voted this

    Add a review

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Price tracking

    Java Code Geeks
    Logo
    Register New Account
    Compare items
    • Total (0)
    Compare