Latest Courses
ISTQB Artificial Intelligence Tester Sample ExamsCheck course
JAVA Programming Online Practice ExamCheck course
Programming for Kids and Beginners: Learn to Code in PythonCheck course
Practice Exams | Codeigniter 4 developer certificationCheck course
WordPress Practice Tests & Interview Questions (Basic/Adv)Check course
Git &Github Practice Tests & Interview Questions (Basic/Adv)Check course
Machine Learning and Deep Learning for Interviews & ResearchCheck course
Laravel | Build Pizza E-commerce WebsiteCheck course
101 - F5 CERTIFICATION EXAMCheck course
Master Python by Practicing 100 QuestionCheck course
ISTQB Artificial Intelligence Tester Sample ExamsCheck course
JAVA Programming Online Practice ExamCheck course
Programming for Kids and Beginners: Learn to Code in PythonCheck course
Practice Exams | Codeigniter 4 developer certificationCheck course
WordPress Practice Tests & Interview Questions (Basic/Adv)Check course
- 86% Introduction to Bayesian Analysis Course with Python 2021

Introduction to Bayesian Analysis Course with Python 2021

$12.99Track price

Add your review
Add to wishlistAdded to wishlistRemoved from wishlist 0
Add to compare

This course is a comprehensive guide to Bayesian Statistics. It includes video explanations along with real life illustrations, examples, numerical problems, and take away notes. The course covers the basic theory behind probabilistic and Bayesian modelling, and their applications to common problems in data science, business, and applied sciences.

The course is divided into the following sections:

Section 2 and 3: These two sections cover the concepts that are crucial to understand the basics of Bayesian Statistics–

Introduction to Bayesian Probability

Introduction to PyMC3 primer

Summarizing the posterior.

Introduction to ROPE.

introduction to Gaussian.

Student’s t–distribution.

Hierarchical models Introduction.

Linear models and high autocorrelation.

Introduction to Pearson coefficient from a multivariate Gaussian.

Robust linear regression.

Hierarchical linear regression.

Correlation, causation, and the messiness of life.

Polynomial regression.

Introduction to Confounding variables and redundant variables.

Masking effect variables.

Adding interactions.

Variable variance.

Section 4: This section covers Linear model generalization:

Introduction to Generalizing linear models.

Introduction to Logistic regression.

Applying the logistic regression to The Iris dataset.

Multiple logistic regression.

Interpreting the coefficients of a logistic regression.

Dealing with correlated variables.

Dealing with unbalanced classes.

Introduction to Softmax regression.

Introduction to Discriminative and generative models.

Introduction to Poisson regression.

Introduction to The zero–inflated Poisson model.

Specification: Introduction to Bayesian Analysis Course with Python 2021

Duration

13 hours

Year

2021

Level

Intermediate

Certificate

Yes

Quizzes

No

User Reviews

0.0 out of 5
0
0
0
0
0
Write a review

There are no reviews yet.

Be the first to review “Introduction to Bayesian Analysis Course with Python 2021”

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Introduction to Bayesian Analysis Course with Python 2021
Introduction to Bayesian Analysis Course with Python 2021

$12.99

Price tracking

Java Code Geeks
Logo
Register New Account
Compare items
  • Total (0)
Compare