Recommender system is a promising approach to boost sales to the next level by suggesting the right products to the right customers.
This course starts by showing you the main solutions of recommender systems in the industry and the hypotheses behind the main solutions. You’ll then learn how to build collaborative filtering models with fastai, and exercise the trained model on test datasets.
As you advance, you’ll visualize latent features, interpret weights and biases, and check what similar users/Items are from the model’s perspective. Furthermore, you’ll build a hybrid recommender system with popularity and association rule, and evaluate the recommendations with selected criteria.
By the end of this course, you’ll be able to explain the theories and assumptions of recommender systems and build your own recommender on other datasets using python. The outline of course is as follows:
Why Business Needs Recommender Systems
Roadmap of the Course
The Hypotheses Behind the Main Solutions of Recommender Systems
Hands–on Collaborative Filtering Recommender System With Fastai on Instacart Grocery Dataset
A Quick Eda on the Grocery Dataset
What Is Collaborative Filtering in Depth
How to Build and Train Collaborative Filtering Model With Fastai
How to Visualize Latent Features? Do Popular Items Have a Higher Bias? What Are Similar Users From Model Perspective?
Specification: Recommender System With Machine Learning and Statistics
|
User Reviews
Be the first to review “Recommender System With Machine Learning and Statistics” Cancel reply
This site uses Akismet to reduce spam. Learn how your comment data is processed.
Price | $14.99 |
---|---|
Provider | |
Duration | 1 hour |
Year | 2021 |
Level | All |
Language | English ... |
Certificate | Yes |
Quizzes | No |
$39.99 $14.99
There are no reviews yet.