GANs have been one of the most interesting developments in deep learning and machine learning recently.
Yann LeCun, a deep learning pioneer, has said that the most important development in recent years has been adversarial training, referring to GANs.
GAN stands for generative adversarial network, where 2 neural networks compete with each other.
What is unsupervised learning?
Unsupervised learning means we’re not trying to map input data to targets, we’re just trying to learn the structure of that input data.
This course is a comprehensive guide to Generative Adversarial Networks (GANs). The theories are explained in–depth and in a friendly manner. After each theoretical lesson, we will dive together into a hands–on session, where we will be learning how to code different types of GANs in PyTorch and Tensorflow, which is a very advanced and powerful deep learning framework!
In this first course, You will learn
GAN
DCGAN
WGAN
If you can’t implement it, you don’t understand it
Or as the great physicist Richard Feynman said: What I cannot create, I do not understand .
My courses are the ONLY courses where you will learn how to implement machine learning algorithms from scratch
Other courses will teach you how to plug in your data into a library, but do you really need help with 3 lines of code?
Specification: Generative Adversarial Networks (GAN): The Complete Guide
|
User Reviews
Be the first to review “Generative Adversarial Networks (GAN): The Complete Guide” Cancel reply
This site uses Akismet to reduce spam. Learn how your comment data is processed.
Price | $14.99 |
---|---|
Provider | |
Duration | 4 hours |
Year | 2022 |
Level | Intermediate |
Language | English ... |
Certificate | Yes |
Quizzes | No |
$84.99 $14.99
There are no reviews yet.