Artificial Intelligence #5: MLP Networks with Scikit & Keras
$84.99 $14.99Track price
Artificial neural networks (ANNs) or connectionist systems are computing systems vaguely inspired by the biological neural networks that constitute animal brains. Such systems learn to perform tasks by considering examples, generally without being programmed with any task–specific rules.
For example, in image recognition, they might learn to identify images that contain cats by analyzing example images that have been manually labeled as cat or o cat and using the results to identify cats in other images. They do this without any prior knowledge about cats, e.g., that they have fur, tails, whiskers and cat–like faces. Instead, they automatically generate identifying characteristics from the learning material that they process.
An ANN is based on a collection of connected units or nodes called artificial neurons which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal from one artificial neuron to another. An artificial neuron that receives a signal can process it and then signal additional artificial neurons connected to it.
In common ANN implementations, the signal at a connection between artificial neurons is a real number, and the output of each artificial neuron is computed by some non–linear function of the sum of its inputs. The connections between artificial neurons are called ‘edges’. Artificial neurons and edges typically have a weight that adjusts as learning proceeds. The weight increases or decreases the strength of the signal at a connection. Artificial neurons may have a threshold such that the signal is only sent if the aggregate signal crosses that threshold. Typically, artificial neurons are aggregated into layers. Different layers may perform different kinds of transformations on their inputs. Signals travel from the first layer (the input layer), to the last layer (the output layer), possibly after traversing the layers multiple times.
Instructor Details
Courses : 3
Specification: Artificial Intelligence #5: MLP Networks with Scikit & Keras
|
6 reviews for Artificial Intelligence #5: MLP Networks with Scikit & Keras
Add a review Cancel reply
This site uses Akismet to reduce spam. Learn how your comment data is processed.
Price | $14.99 |
---|---|
Provider | |
Duration | 2.5 hours |
Year | 2019 |
Level | All |
Language | English |
Certificate | Yes |
Quizzes | No |
$84.99 $14.99
Fred –
I have enrolled to this course and really like this instructor courses because his courses are simple and practical. I highly recommend you to enroll.
Vipul Patel –
Good work. Loved the way you explained. Clearly understood the concept you are trying to explain. Nice job buddy. Time and money worthy even to go through your video. Thanks. Notify me if you post any new tutorials.
Clifford Ferraren –
Perfect
Syed Hassan Bukhari –
A very good course. Great work!
Richard Alan Robey –
Great course, can’t wait wait to get better skills. Sobhan your the King of AI.
Tharindu Buddhika Adhikari –
This course is amazing and above my expectations! Very good exercises, good speed, well communicated. The instructor made me feel very comfortable and was able to take many things away. Excellent content and very knowledgeable instructor!